Validation of model calculation of ammonia deposition in the neighbourhood of a poultry farm using measured NH3 concentrations and N deposition

Publication Type:

Journal Article


Atmospheric Anvironment, Volume 43 (2008)




Substantial emission of ammonia (NH3) from animal houses and the related high local deposition of NH3- N are a threat to semi-natural nitrogen-deficient ecosystems situated near the NH3 source. In Denmark, there are regulations limiting the level of NH3 emission from livestock houses near N-deficient ecosystems that are likely to change due to nitrogen (N) enrichment caused by NH3 deposition. The models used for assessing NH3 emission from livestock production, therefore, need to be precise, as the regulation will affect both the nature of the ecosystem and the economy of the farmer. Therefore a study was carried out with the objective of validating the Danish model used to monitor NH3 transport, dispersion and deposition from and in the neighbourhood of a chicken farm. In the study we measured NH3 emission with standard flux measuring methods, NH3 concentrations at increasing distances from the chicken houses using passive diffusion samplers and deposition using 15N-enriched biomonitors and field plot studies. The dispersion and deposition of NH3 were modelled using the Danish OML-DEP
model. It was also shown that model calculations clearly reflect the measured NH3 concentration and N deposition. Deposition of N measured by biomonitors clearly reflected the variation in NH3 concentrations and showed that deposition was not significantly different from zero (P < 0.05) at distances greater
than 150–200 m from these chicken houses. Calculations confirmed this, as calculated N deposition 320 m away from the chicken farm was only marginally affected by the NH3 emission from the farm. There was agreement between calculated and measured deposition showing that the model gives true estimates of the deposition in the neighbourhood of a livestock house emitting NH3