Land Use and Landscape Management

Theme 4 workshop reporting for TFRN-12 Aarhus University, 28 June 2017

RE: Joint DG ENV & TFRN workshop: Towards joined-up nitrogen guidance for food, air, water and climate co-benefits.

Brussels, October 11th and 12th, 2016.

Participants

Sarah	Faulkner	National Farmers Union	United Kingdom
Simon	Buckle	OECD	France
Penny	Johnes	University of Bristol	United Kingdom
Sergiy	Medinets	ONU	Ukraine
Hélène	Simonin	EDA	Belgium
Tommy	Dalgaard	Aarhus University	Denmark
		VLK+EUFRAS(European Forum of Rural	
Michael	Kuegler	Advisory Services)	Belgium
		European Region Tyrol - South Tyrol -	
Tanja	Schmadl	Trentino - Brussels Office	Austria
Ute-Maria	Skiba	NERC- Centre fro Ecology and Hydrology	United Kingdom
Patrick	Durand	INRA	France
Bert	Baumann	RIVM	Netherlands
Lidia Maria	Sas Paszt	Research Institute of Horticulture	Poland
Keith	Smith	University of Edinburgh	United Kingdom
Clare	Howard	CEH	United Kingdom
Mark	Sutton	CEH	United Kingdom
Klaus	Butterbach-Bahl	KIT/ILRI	Germany

Preliminary list of land use and landscape management measures

Geographically targetted land use change:

- Set aside
- Integrated Buffer Zones (Riparian Buffer Strips)
- Biodiversity buffer strips around fields
- Hedgerows and afforestation
- Changed crop rotation/ perennial crops (for e.g. permanent grasslands)
- Agroforestry
- Wetlands and watercourse restoration
- Constructed mini-wetlands.....

Geographically targeted management:

- Soil tillage and conservation (for e.g. no till on organic soils)
- Drainage and controlled drainage
- Grassland management
- Placement of livestock production
- Manure (re)distribution, fertigation etc.
- Placement of biogas plants and bio-refineries for biomass redistribution.....

From the Theme 4 background document

Top-10 landscape measure candidates

INIVERSITET

Agroforestry

- Livestock agroforestry
- Agroforestry/ alley cropping

Buffer zones

- Riparian buffer strips (harvested)
- Riparian buffer strips (non-harvested)
- Biodiversity buffer strips / set-aside land

Tree planting

- Planting trees on steep slopes and marginal land
- Hedgerows
- Afforestation

Wetlands (harvested/non-harvested, restored/constructed)

Landscape planning (spatial)

- Regional, spatial integration of livestock and crop farming
- Soil quality based differentiation of land use, zoning
- Spatially targeted mitigation measures to the most sensitive/responsive sites

Landscape management (spatio-temporal)

- Permanent grassland and grassland management
- Fertigation etc.
- Constrained outdoor grazing livestock production (and increased N tax!!?)

Revised assessment categories

Water quality

- **Air pollution**
- GHG
- NUE
- **Other issues...** iLUC etc.

Practice	Water quality¤	Air Pollution	GHG emissions	NUE, surplus and	Notes (incl. indicators
				output §	suggested) £
	 Nitrate Ammonia Total N 	 Total NH3 emissions Ammonia concentrations*** NOx emissions from soils** N'PM2,5 concentrations 	 Nitrous oxide Carbon dioxide # N2 ## Methane ### 	EfficiencySurplusOutput	
Riparian buffer strips	NO3 -+totalN +NH3 +org N	No link	++N2O +-CH4 CO2 if used for bioenergy/hay	+efficiency if harvested	produce bioenergy crops/hay grass in the buffer strip to be able to remove biomass N co-benefit: reduce erosion (sediment) resource person: Penny, Patrick

Guidance checklist for implementation of landscape scale measures

Relevance of the different nitrogen forms for the landscape scale measure implementation:

Water quality

- Nitrate
- Ammonia
- Total N... Organic compounds...

Air pollution

- Total ammonia emissions and concentration
- Nitrous oxide, NOx ...
- N'PM2,5

GHG

- Nitrous oxide
- Free nitrogen
- Relation to other greenhouse gasses
- NUE
- Other issues... iLUC etc

Summary of next steps

Table 1. Landscape management impact on Nitrogen losses (first draft synthesis for discussion)

Review measure tables: a) Geographically targeted Land use

Practice	Leaching/runoff	Ammonia volatilization	Nitrous oxide emissions	Notes
Set-aside				
grassland				
Riparian buffer	\checkmark	\downarrow	$\checkmark \uparrow$	N2O mitigation
strips		I	I	rate depends on

b) Geographically targeted management

Practice	Leaching/runoff	Ammonia volatilization	Nitrous oxide emissions	Notes
Types of soil				

. . . .

.

 Elaborate recommendations for the further work on land use and landscape scale management measures:

3. Summary and conclusions

Based on the European Nitrogen Assessment, and for further development, the following key points in relation to nitrogen flows and fate in rural landscapes have summarized (Cellier *et al.* 2011): "

Nature of the problem:

• The transfer of nitrogen by either farm management activities or natural processes

 Discuss top-down versus bottum-up approaches

AOB?

Additional points to discuss

- Mixing agricultural and non agricultural (or extensively managed) land uses dilutes the concentrations of nitrogen in air and water, which may be of interest for adverse effects (or regulation compliance...) based on concentrations, and not on fluxes.
- In a landscape, you have generally several farms, and you can sometimes take advantage of the complementary and/or collaboration between farms to better close the nitrogen cycle. The obvious example is the mixing of livestock farms and crops farms (this was the main subject of the FP7 CANTOGETHER program

http://www.wur.nl/en/show/cantogether.htm), but there are other examples.

Additional studies to include

- A modeling study on mitigation of N₂O emissions and NO₃ leaching at different agricultural sites across Europe using LandscapeDNDC Molina-Herrera et al. Biogeosciences, 10, 119–133, 2013 www.biogeosciences.net/10/119/2013/
- Estimation of nitrogen budgets for contrasting catchments at the landscape scale <u>http://www.biogeosciences.net/10/119/2013/bg-10-119-</u> <u>2013.pdf</u>
- Heterogeneity of atmospheric ammonia at the landscape scale and consequences for environmental impact assessment <u>http://ac.elscdn.com/S0269749113002157/1-s2.0-S0269749113002157main.pdf?_tid=8d247716-8bcf-11e6-91d1-00000aab0f6b&acdnat=1475763602_fa7ea83f86ac35ff70fba00feb 3bb3f2
 </u>
- Catchment land use effects on fluxes and concentrations of organic and inorganic nitrogen in streams <u>http://ac.els-</u> <u>cdn.com/S0167880914004733/1-s2.0-S0167880914004733-</u> <u>main.pdf?_tid=be94ae92-8bcf-11e6-b4a2-</u> <u>00000aab0f02&acdnat=1475763685_7d776822a8e6ede73983a81</u> <u>2a3fc7a5b</u>