Task Force on Reactive Nitrogen (TFRN)

Update and Proposals for revision of Annex IX of the Gothenburg Protocol

Mark Sutton and Oene Oenema (co-chairs TFRN)

WGSR-47, 30 August – 3 September 2010
General objectives of TFRN:

To provide technical information to be able

- to develop an integrated vision and approach to abatement of reactive nitrogen emissions and effects;
- to improve coordination on the development of integrated reactive nitrogen policies;
- to search for synergies between policies on air pollution and other policies;
TFRN documents to WGSR-47

3. Clean copy of draft revised technical Annex IX; Informal Document 2
6. Nitrogen and Climate; Draft executive summary Informal Document; hard copies distributed here
Report TFRN-4
11-13 May 2010, Prague

2. Reports on National Nitrogen Budgets.
4. Report on Nitrogen & Climate
5. Reports from other conventions
Nitrogen & Climate (i)

- Draft Executive summary available
- Main messages:
 - Nitrogen emissions to air and waters contribute to both air pollution and climate change.
 - Nitrogen management measures affect air pollution, climate change, food production and biodiversity simultaneously.
 - The relationships between nitrogen management and climate change mitigation are complex and not fully understood.
Main messages (continued)

– However, there are opportunities: e.g., measures improving nitrogen use efficiency can lead to win-wins, with benefits for both air pollution and climate mitigation.

– Cost-benefit analyses of abatement policies on NH$_3$ and NO$_x$ emissions should include also climate change effects.

– It is recommended that the Convention should collaborate with IPCC to further explore the policy opportunities for linking nitrogen, air pollution and climate.
Current Annex IX of Gothenburg Protocol
Control of emissions of NH₃ from agricultural sources

A. Advisory code of good agricultural practice;
B. Ban on ammonium carbonate fertilizers; limit emissions from urea fertilizers, when feasible;
C. Manure application: target of >30% emission reduction, when feasible;
D. Manure storage: large pig & poultry farms: target of >40% emission reduction for new stores; and 40% for existing stores when feasible; and
E. Animal housing: target > 20% emission reduction for new housing of large pig & poultry farms.
Up-dating Annex IX, because:

\[\text{NH}_3 \text{ emissions contribute to:}\]

- Decrease of human health
- Biodiversity loss
- Soil and water acidification
- Climate change (positive & negative effects)
- Indirect effects (nitrate leaching, etc.)
Reductions of NH$_3$ emissions have been very modest since 2000:

- On average ~5% (UNECE) to ~10% (EU)
- In some countries ~50%
- Changes in NH$_3$ emissions due to:
 - Structural changes in animal agriculture
 - Implementation of low-emission technology
- Max. technically & economically feasible reduction ~40-50%
Animal manures are main sources of NH$_3$ emission.

NH$_3$ emission from animal manure systems in EU-27 in 2000, Gg N

- **Dairy cattle**
- **Other cattle**
- **Pigs**
- **Poultry**
- **Other Livestock**

Plus 10% from fertilizers + 10% from other sources

Oenema et al., 2008
Proposals for Updated and **New** measures in Annex IX

- Nitrogen management, considering the whole N cycle
- Livestock feeding strategies
- Animal housing, **including cattle housing**
- Manure storage, **including those for cattle manure**
- Manure spreading
- Mineral fertilizer use, including urea, **ammonium phosphate and ammonium sulphate**

- Possibility for a “Pick and Mix” approach
Sequence of processes that affect total NH$_3$ emissions

Humans’ quest for animal protein

Livestock population \rightarrow Livestock feeding \rightarrow Manure in housings \rightarrow Manure storages \rightarrow Manure application

Grazing animals

Measures of proposed/revised Annex IX

1. Nitrogen management: affect all sources
2. Livestock feeding strategies; affect all manure sources
3. Animal housing systems: affect one source
4. Manure storage systems; affect one source
5. Manure application: affect one source, but cumulative
6. Fertilizer application: affect one source
Three ambition levels

A. Technically feasible options that reflect a high level of ambition in reducing NH$_3$ emissions, while remaining cost effective
B. Technically feasible options that reflect a moderate level of ambition, as well as being cost effective;
C. Technically feasible options that reflect a modest level of ambition, as well as being cost effective;
Ambition levels (A, B, C) vary in targets, thresholds and implementation dates

- **Targets:**
 - Emissions reduction targets
 - Improvement targets for N use efficiency, N balances and feeding strategies

- **Thresholds**
 - Farm size
 - Size of tankers for manure spreading

- **Implementation dates:**
 - Various dates
Selecting farm size thresholds

- **Threshold for cattle farming** (~50% agric NH$_3$)
 - > 50 livestock units (covering 13% of farms in EU and 72% of cattle)
 - > 5 livestock units (covering >95% of all cattle)

- **Threshold for pig farming** (~20% agric NH$_3$)
 - > 750 sows & > 2000 fattener pigs (following EU-IPPC; covering ~20% of EU poultry in EU)
 - > 200 livestock units (covering ~70% of pigs in EU)
 - All new or largely rebuild farms

- **Threshold for poultry farming** (~15% NH$_3$)
 - > 40,000 chickens (following EU-IPPC: covering ~70% of EU poultry in EU)
 - All new or largely rebuild farms
Nitrogen Use Efficiency (NUE) and Nitrogen Input-Output Balances (NIOB) proposed as indicators.

First 5 years establishing baseline values on ‘demonstration’/’pilot’ farms; thereafter on
- A: > 5 livestock units
- B: > 50 livestock units for cattle; >200 LSU of pigs; >40000 chickens
- C: > 50 livestock units for cattle; current thresholds for pigs and poultry

Improvement targets: relative change of 5 yrs averages
- A: 30%
- B: 20%
- C: 10%
C. Livestock feeding strategies

- Animal feed composition (NH$_3$ emission potential) proposed as indicator:
 - Protein content of animal feed;
 - Non-starch polysaccharides content
 - Cation-anion balance

- First 5 years establishing baseline values
 - A: > 5 livestock units on all farms
 - B: > 50 livestock units for cattle; >200 LSU of pigs; >40000 chickens
 - C: > 50 livestock units for cattle; current thresholds for pigs and poultry

- Improvement targets: relative change of 5 yrs averages
 - A: 30%
 - B: 20%
 - C: 10%
D. Animal housing

- Existing large pig & poultry farms and new broiler farms: >20% reduction as now;

- New pig houses with >5 LSU; reduction targets:
 - A: >35% when T in summer >20 C; else >60%
 - B: >25% when T in summer >20 C; else >35%.
 - C: >25%

- New laying hen houses with >5 LSU; reduction targets:
 - A: >60%
 - B: >60% for non-caged hens and 50% for hens in cages
 - C: >60% for non-caged hens and 30% for hens in cages

- New cattle farms with >5 LSU: >25% reduction target, when feasible

- Other livestock with >5 LSU; reduce NH3 emissions when feasible
E. Manure Storage

- New slurry stores; reduction targets:
 - A: 80%; implementation when ratified
 - B: 60%; implementation in 2017/2019
 - C: 40%; implementation in 2017/2019

- For existing slurry stores: reduction target >40%
- Solid manure: reduce NH$_3$ emissions when feasible:
F. Manure application

- Low-emission spreading methods, such as band spreading and slurry injection have been shown to be cost-effective.
- Proposed to phase out the unabated, surface application of slurry by 2018/2020: according to three ambition levels.

Targets and Options

- Targets depend on soil & crop conditions, slope, farm size, tanker size (see Tables for levels A, B and C):
 - A: > 60%, with relaxation to 30% for small farms
 - B: > 30% for all, with exemptions
 - C: > 30%, with full exemption for small farms
- No requirements for the very smallest farms (<5 LU)
G. Urea and ammonia-based fertilizers

- Ban on ammonium carbonate fertilizers
- Urea-based fertilizers: emission reduction targets:
 - A: >80%
 - B: >50%
 - C: >30%
- Ammonium sulphate and phosphate based fertilizers: emission reduction targets:
 - A: >80%
 - B: >50%
 - C: >30%
Guidance Document for abatement of \(\text{NH}_3 \) emissions

- Revised draft version available; further revision needed, especially on cost-benefit analyses (TFRN-5, Paris, October 2010).
- The Guidance Document lists 3 categories of techniques/approaches:
 - Category 1: well proven
 - Category 2: sound, but some uncertainties
 - Category 3: with problems and not recommended
- Categories 2 and 3 may be used to meet Annex IX commitments, but suitable verification should be provided by the Party.
Slurry spreading: a wide range of low-emission techniques are available

Splash Plate Spreader - 1950s technology

Trailing Hose

Trailing Shoe

Slot Injector

The car and the exhaust pipe…
H. Reporting requirements

- Report quantitative data on the measures as outlined in this Annex, to facilitate the sharing of information and experience of ammonia mitigation.
- Where measures are used, other than those listed as Category 1 in the Ammonia Guidance Document, Parties shall report and provide justification of the verification procedures.
Concluding Remarks

- Option A has the potential to reduce NH₃ emissions 30-50%:

- Ongoing work
 - Finalizing the revised Guidance Document.
 - Further elaboration of cost & benefits of all options;
 - Europe-wide assessment of all options by IIASA.
 - TFRN-5: Focus on costs (Paris, 25-28 October 2010)
 - TFRN-6: Full meeting (10-12 May 2011, Madrid)
Societal Costs and Benefits: Is it worth it?

- Societal costs, €10-€20 damage / kg N emitted for each form
- Major net benefits of mitigating reactive nitrogen
- Paris Workshop TFRN-5: refine costs-benefits for the farmer
Thank you for your attention

Comments, Questions?
TFRN Elements

- **Nitrogen & Climate** – Special Report for WGSR-47 and EB during 2010 – highlighting the co-benefits of an integrated approach.