

FarmAC model

Nick Hutchings, Margit Jørgensen and Jonas Vejlin Aarhus University

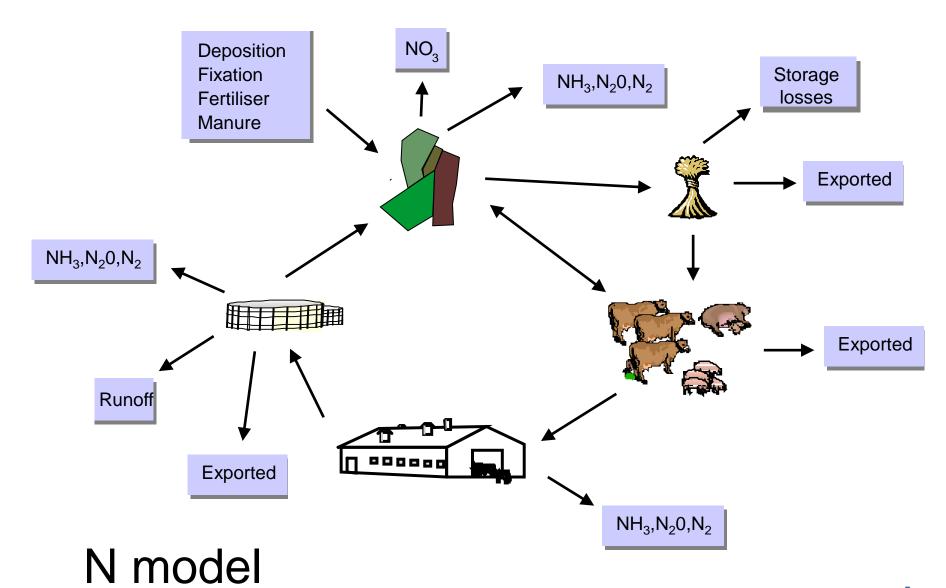
European Project n° 266018

INRA, ILRI, WUR, EMBPRAR, FAO and others

Role of farm-scale N budgets (1)

- Is there a problem?
 - Farm N balance (output of products input of fertiliser etc)
 - Compare with standard or best-practice farms of same type
- Where is the problem?
 - Farm N budget, using measured data (e.g. milk production, crop production)
 - Compare N use efficiencies for livestock & crops with standard or best-practice farms of same type

Role of farm-scale N budgets (2)

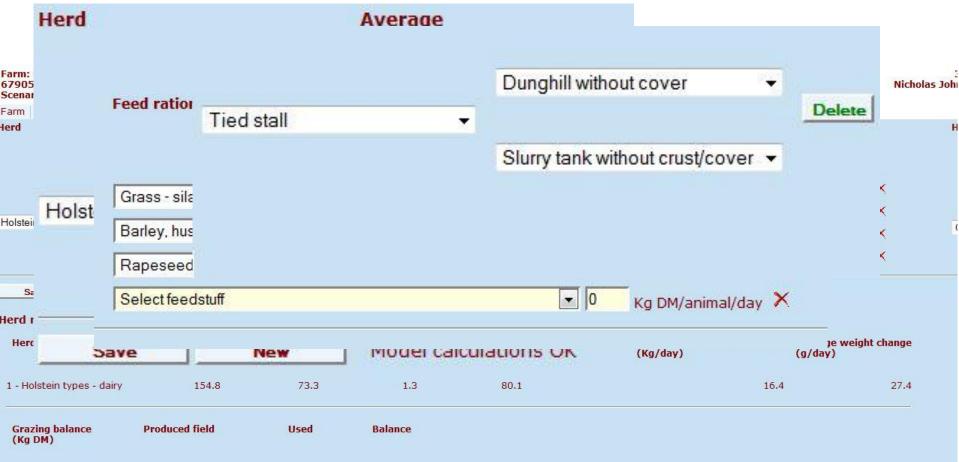

- What to do about the problem?
 - What measures can be applied?
 - How effective are they likely to be?
- Requires a quantitative understanding of the mechanisms driving N use and loss
 - Modelling
- Requires data and parameterisation

FarmAC model

- Developed as part of EU AnimalChange project
 - www.AnimalChange.eu
- Intended to have wide applicability
 - W Europe, Senegal, S Africa, Brazil
- Simple enough limited demand for inputs and parameters
- Complex enough describe consequences of abatement/mitigation measures
- C and N mass flows
- Web-based user interface

Livestock

- User defines:
 - Number of each livestock type
 - Composition of feed ration
- Energy and protein budget to predict:
 - Maintenance
 - Growth
 - Milk production



Manure management

- EEA/EMEP Guidebook Tier 2
 - Emission factors
- NH₃ emission from animal housing
- NH₃, N₂ and N₂O emission from manure storage
- Includes runoff from storage
- NH₃ emission from field-applied manures

Cattle

Cropping

None, one or many crop rotations

Year 1		Year 2		Year 3	Year 4		
			are oil	I s	I		
Spring barley	Bare soil	Spring barley		Winter wheat	Gr	ass	

Fields

		Rotation name:							
Farm Rotation Y	ield Ruminants Non ruminants	Cereal							
Rotation name:		Crop					Irrigation		
Cereal		Spring barley ▼ JB					•	Irrigated ▼	
Crop		Winter wheat				Start date	End date		
Spring barley					-	21-03-2000	08-08-2000	Delete crop	
Winter wheat	Product	Oat ·				09-09-2000	27-07-2001	Delete crop	
Oat	Spring barley	Grass		*		01-04-2002	01-08-2002	Delete crop	
Grass	Wheat	New crop	Save rotation	Delete rota			Irrigatio	п	
New crop	Oats	Rotation name:		Ŧ	Irrigated				
Rotation name:	Italian ryegrass, spring, early	Permanent grass				End date	4		
Permanent grass Ition		Crop		08-08-2000	Dele	te crop			
Crop Grass		Grass		27-07-2001 Del		te crop			
New crop		New crop	a	01-08-2002 Dele		ete crop			
*	Product			31-08-2003	Dele	te crop			
New rotation	Italian ryegrass, spring, early	New rotation	n						

Fertilizer and manure applications

	Fertilizer												
- 1	Crop		Type of fertilizer					Spread	W. A. C.		Kg N	N/ha	
	Spring ba	arley	Cattle slumy		•	Inje	ction			¥	100	March	
			Ammonium nitrat	e		Fer	tilizer	spreading		¥	50	April	
		T	Calast manues &	r-d-		0.1		1.		_	10		-11
			Select manure/f	ertiliz	er 🔻	Sel	ect d	elivery me	thod	*	10	Select mo	ntn
	Cereal	Winter wheat	Ammonium nitrate		Fertilizer spreading			elivery me		•	10	Select mo	ontr
	Cereal	184		•		· ·	120		×	•	10	Select mo	ntn
	Cereal	184	Ammonium nitrate	•	Fertilizer spreading	od 🕶	120	March	×		lo	Select mo	ontr
		Winter wheat	Ammonium nitrate Select manure/fertilizer	·	Fertilizer spreading Select delivery meth	od 💌	[120] [0	March Select month	×××××××××××××××××××××××××××××××××××××××		10	Select mo	ontn
	Cereal	Winter wheat Spring barley	Ammonium nitrate Select manure/fertilizer Cattle slurry	• • •	Fertilizer spreading Select delivery meth Trailing hose	od •	[120] [0	March Select month	×××××××××××××××××××××××××××××××××××××××		Į0	Select mo	ontr

Mineral N supply

- Atmospheric deposition
- Fertilizer N input
- Manure ammonium N input
- Urine N input
- N fixation
- N mineralization/immobilization in soil
 - Crop residues, manure organic N, faeces
 - Simple dynamic soil N model
- Carry-over from previous crop

Mineral N losses & availability

- Ammonia emission from fertilizer
 - Depends on fertilizer type and spreading method
- N_2 and N_2 O from manure, crop residues etc.
 - Source-specific emission factors
- N leaching
 - Simple index-based model for nitrate leaching
 - Organic N leaching soil model
- Mineral N available to crop = supply losses

Crop dry matter yield

- User inputs potential crop DM yield
 - Primary product (e.g. grain, grass)
 - Secondary product (e.g. straw), if relevant
- Actual yield is determined by:
 - Availability of water
 - Availability of mineral N in soil

Farm: 67905 <u>Select farm Log out</u> 67905 Grass farm with dairy cows and one cropping sequence

rm	Cropping					
-		N in ir	bedding	1.825	kg N/ha/yr	
-		N in importe	products	22.5583	kg N/ha/yr	
		N sold	62.8316	kg N/ha/yr		
-			16.6218	kg N/ha/y		
		N			0.208	kg N/ha/yr
<u>-</u>		HOY	NS	iss1	O	kg N/ha/yr
		Carbon floy Carbon floy Carbon floy Carbon floy A green not a semiss A green not a semission from manure storage N lost in NH3 emission from manure storage	as et	anure	0	kg N/ha/yr
-		Carsuse	of N e	xported	79.6614	kg N/ha/y
		eenho13 emiss	housing	5.3182	kg N/ha/y	
-		an N2 emission from	storage	3.0635	kg N/ha/y	
		ost in N2O emission from manure storage	kg N/ha/yr			
		N lost in NH3 emission from manure storage	kg N/ha/yr			
		N lost in runoff from manure storage	0	kg N/ha/yr		
		Emission of N2 from the field	32.8511	kg N/ha/yr		

Applications

- Use to estimate effect of farm-specific measures to improve N use efficiency and reduce N losses
 - Especially where local adaptability is important
- Farm N management data collection
 - Use the interface without using the model
 - Open access

Future

- Adding phosphorus, ash and water flows
 - Economics + LCA
- Improved modelling of nitrate leaching
- Tier 3 approach for gaseous emissions
 - e.g. temperature-dependent emissions factors
- nick.hutchings@agrsci.dk