N issues in Spain.
Emissions Trends, Critical Loads, Effects

Isaura Rábago
CIEMAT

Task Force on Reactive Nitrogen
Copenhaguen, 25-26 April 2013
- Trends in the emissions of N compounds to the atmosphere. Influence of different sectors

- Critical loads issues (CLNnut)

- Effects of N inputs on Spanish ecosystems

- Summary of current research relevant for N and CLRTAP
Trends in Spanish Emissions

Figura 3.1.1.a.- Índice de evolución de las emisiones (contaminantes principales)
Trends in Spanish Emissions (NO_x and NH_3)

Emission Inventory. Spain. 1990-2011
Ministry of Agriculture, Food and Environment
Evolution of the share of the different sectors (%) on the total NO\textsubscript{x} emissions

Evolution of the share of the different sectors (%) on the total NH$_3$ emissions

Policy: Air Quality and Emissions Control (i)

AIR QUALITY
Spanish strategy on Air Quality and Atmospheric Protection (Ley 34/2007)

Air Quality Improvement (SOx NO2, NOx, PM, Pb, C6H6, CO O3, Ar, Cd, Hg, Ni) (RD 102/2011)

Ley 16/2002 –IPPCC– Integrated Pollution Prevention and Control

EMISSIONS
Directive 2001/81/CE Emission Ceilings
Development of Directive IPPC – BAT for different sectors
Gothenburg protocol
Plan AIRE National Programme (2013-2016)

78 measures to reduce pollution and improve air quality in urban areas

- 27 measures to improve aspects related with public information, Administration, public awareness, R+D+i.

- 51 measures to reduce emissions from industry, construction, road transport, air transport, agriculture, residential, commercial and institutional

AGR1 Promote good agricultural practices
AGR2 Implementation of the Gothenburgh Protocol measures
AGR3 Reduce emissions from biomass burning
CLRTAP: Critical loads of nutrient N

Critical Loads Modelling
CL Nnut
CCE Status Report 2011

Empirical Critical Loads
CL Nnut
CCE Status Report 2010
CLRTAP: Critical loads of nutrient N

N Deposition (2009) EMEP

N Exceedances

Exc = Ndep – CLNnut

CCE Status Report 2011

Figure 1.1 Average Accumulated Exceedance (AAE) of critical loads for eutrophication in 2000 (top-left), and in 2020 under the CLE (top-centre), Low* (top-right), MID (bottom-left), High* (bottom-centre) and MFR (bottom-right) scenarios. The areas with peaks of exceedances in 2000 (red shading) are markedly decreased in 2020. However, areas at risk of nutrient nitrogen (size of shades indicates area coverage) remain widely distributed over Europe in 2020, even under MFR.
CLRTAP: Critical loads of nutrient N
Challenges

a tool for assessment – a tool for communication

- Conceptual and algorithm adaptation of current methods to estimate CLs for Mediterranean ecosystems:
 - Seasonalities (inputs and dry deposition, biological activity, abiotic factors)
 - Target: N leaching, Biodiversity
 - Recurrent fire events; forest management; erosion processes

- Aggregation of present data to derive empirical CLs and to perform Dynamic Modelling exercises
 - Lack of data series (soil parameters, N dynamics in soils)

- Dry deposition
Effects of N inputs into Spanish ecosystems

Increase in N deposition in background monitoring stations in Catalonia (1995-2007) (CREAF-CIEMAT)

Study on the trends of N deposition in Spanish EMEP stations

Increase in N concentration in herbaria (Peñuelas & Filella, 2001, Global Change Biology, 7:427-433)

Biodiversity – compilation of botanical inventories. Navarra: Increase of nitrophile moss species since 1880 (Ederra & Villarroya, 2008, Cryptogamie, bryologie)

Influence of N deposition on plant biodiversity at Natura 2000 sites in Spain (Ariño et al. 2011)

Detection of N impairment in ecosystem cycling in Catalonia (CIEMAT-UCM-CREAF) – influence of cities and large combustion sources

Increase of NO$_3$ levels in the Ebro River basin (1981-2005) (UCM-CIEMAT)
Relevant N-related research for LRTAP in Spain

• RUENA network: Optimization of N usage in Mediterranean Agriculture (ES)

• EDEN: Effects of nitrogen deposition in Mediterranean evergreen holm oak forests. 2010-2012 (ES)

• ECLAIRE: Effects of Climate Change on Air Pollution and Response Strategies for European Ecosystems (EU)

• MONTES interactions between the global change components and the ecosystem services provided by Mediterranean woodlands, in order to devise the necessary management strategies for mitigation and sustainability 2009-2013 (ES)

………many others projects and research groups….
EDEN: Effects of nitrogen deposition in Mediterranean evergreen holm oak forests
(Plan Nacional, 2010-2012)

Objective: to determine N inputs to Holm oak (*Quercus ilex* L.) forests located at the North, Centre and North-eastern regions of the Iberian peninsula (Navarra, Madrid and Catalonia) and to assess the effects of those inputs on ecosystem N cycling. Critical loads.

Preliminary results
✓ Meteorology and N deposition show important seasonal and inter-annual variations
✓ Total bulk inorganic N deposition 2.6 kg N ha\(^{-1}\) yr\(^{-1}\)
✓ Throughfall is not a good indicator of total N deposition in Holm oak forests
✓ Loss of NO\(_3\)^- in soil water when atmospheric N inputs occur while low biological activity
N dynamics in Mediterranean catchments

- Spatialized N budgets in a large agricultural Mediterranean watershed: high loading and low transfer (2012), *Biogeosciences* 9, 57–70
 Lassaletta, L., Romero, E., Billen, G., Garnier, J., García-Gómez, H., Rovira, J.V.

- The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. (2013).
 Agriculture Ecosystems & Environment 164:32-52

- How changes in diet and trade patterns have shaped the N cycle in Spain (1961-2009)
 Lassaletta,L, Billen,G, Romero,E, Garnier,J, Aguilera,E. *To be published*

Results

- High N retention in the Ebro catchment (N input 5118 kgN km\(^{-2}\) yr\(^{-1}\))
 ⇒ management measures to reduce agricultural N surpluses by better balancing N fertilization

- >90% of N agricola input is retained, creating risks in terms of water quality and atmospheric pollution
Modelling N deposition

EMEP

(mg N m\(^{-2}\) y\(^{-1}\))

- Total N dep in Spain: 5-20 kg N ha\(^{-1}\) y\(^{-1}\)

CHIMERE

(mg N m\(^{-2}\) y\(^{-1}\))

- Total N dep in Spain: 5-20 kg N ha\(^{-1}\) y\(^{-1}\)

Natura 2000

- LIC - Habitats
- ZEPA - Aves
- LIC y ZEPA

Natura 2000
Dry deposition in the Mediterranean area is **subestimated** in the EMEP model.

MEASURED DATA

- **La Castanya - *Q. ilex***
 - Dry dep. / Total dep. = 62-67%
 - (Avila et al., 2002; Rodà et al., 2002)

- **Valencia - *P. halepensis***
 - Dry dep. / Total dep. = 40-75%
 - (Sanz et al., 2002)

EMEP MODELLED DATA

- **Q. ilex**
- **Q. ilex**
- **P. halepensis**
- **P. halepensis**
- **Q. ilex**

Dry deposition is subestimated in the EMEP model.
Thank you for your attention!

......we keep working......
CLRTAP: Critical loads of nutrient N

Table I.2. Health and environmental indicators values for the year 2020

<table>
<thead>
<tr>
<th>Party</th>
<th>Mortality PM (averagel loss per person)</th>
<th>Mortality Ozone (cases/1,000 people)</th>
<th>Mortality PM and Ozone (cases/1,000 people)</th>
<th>Acidification (% area at risk)</th>
<th>Eutrophication (% area at risk)</th>
<th>Acidification (mod H+)</th>
<th>Eutrophication (mod N)</th>
<th>Biodiversity (%)</th>
<th>Material Correlation</th>
<th>Material Siling</th>
<th>Material Correlation</th>
<th>Material Siling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>4</td>
<td>34</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>73</td>
<td>333</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Belgium</td>
<td>7</td>
<td>32</td>
<td>210</td>
<td>15</td>
<td>108</td>
<td>85</td>
<td>410</td>
<td>39</td>
<td>14</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>4</td>
<td>46</td>
<td>131</td>
<td>0</td>
<td>0</td>
<td>59</td>
<td>62</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cyprus</td>
<td>4</td>
<td>27</td>
<td>107</td>
<td>0</td>
<td>0</td>
<td>66</td>
<td>124</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>5</td>
<td>36</td>
<td>144</td>
<td>18</td>
<td>75</td>
<td>100</td>
<td>652</td>
<td>12</td>
<td>11</td>
<td>43</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Denmark</td>
<td>4</td>
<td>27</td>
<td>111</td>
<td>7</td>
<td>15</td>
<td>100</td>
<td>603</td>
<td>44</td>
<td>6</td>
<td>1</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Estonia</td>
<td>3</td>
<td>13</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>25</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Finland</td>
<td>2</td>
<td>9</td>
<td>58</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td>18</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>France</td>
<td>4</td>
<td>30</td>
<td>130</td>
<td>3</td>
<td>9</td>
<td>87</td>
<td>277</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Germany</td>
<td>5</td>
<td>35</td>
<td>157</td>
<td>19</td>
<td>62</td>
<td>62</td>
<td>278</td>
<td>38</td>
<td>11</td>
<td>43</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Greece</td>
<td>4</td>
<td>45</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>187</td>
<td>0</td>
<td>13</td>
<td>3</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Slovenia</td>
<td>4</td>
<td>37</td>
<td>144</td>
<td>0</td>
<td>0</td>
<td>63</td>
<td>74</td>
<td>0</td>
<td>15</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spain</td>
<td>2</td>
<td>37</td>
<td>102</td>
<td>0</td>
<td>0</td>
<td>89</td>
<td>190</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>17</td>
<td>68</td>
<td>4</td>
<td>2</td>
<td>36</td>
<td>60</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3</td>
<td>27</td>
<td>110</td>
<td>14</td>
<td>14</td>
<td>37</td>
<td>52</td>
<td>1</td>
<td>6</td>
<td>51</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Latvia</td>
<td>5</td>
<td>36</td>
<td>158</td>
<td>0</td>
<td>0</td>
<td>63</td>
<td>74</td>
<td>0</td>
<td>15</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malta</td>
<td>4</td>
<td>49</td>
<td>158</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>891</td>
<td>56</td>
<td>9</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Netherlands</td>
<td>6</td>
<td>21</td>
<td>184</td>
<td>75</td>
<td>104</td>
<td>86</td>
<td>891</td>
<td>56</td>
<td>9</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Poland</td>
<td>5</td>
<td>26</td>
<td>147</td>
<td>37</td>
<td>159</td>
<td>98</td>
<td>499</td>
<td>4</td>
<td>9</td>
<td>79</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Portugal</td>
<td>3</td>
<td>42</td>
<td>125</td>
<td>3</td>
<td>7</td>
<td>66</td>
<td>62</td>
<td>0</td>
<td>10</td>
<td>14</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Romania</td>
<td>5</td>
<td>35</td>
<td>145</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Slovakia</td>
<td>5</td>
<td>30</td>
<td>138</td>
<td>7</td>
<td>10</td>
<td>100</td>
<td>372</td>
<td>0</td>
<td>9</td>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Guidance Document on health and environmental improvements. Gothenburg Protocol