Ammonia emissions from land spreading manures – Review of Guidance Document

EPMAN 2
Garmisch-Partenkirchen, 27 April 2009

Stan Lalor, Tom Mисselbrook,
Shabtai Bittman, Gary Lanigan, Ken Smith, Jim Webb
Land Application group outcomes

- Guidance document should drive the Code of Practice
- But, Current Code of Practice is an older document?
- No major changes required

Decision

Proposed changes to Guidance Document

1. More text regarding other potential loss pathways (avoid pollution swapping)
2. Clarification of terms and description of application techniques
3. Ammonia reduction efficiencies
 - More ranges rather than single figures
 - Discussion of factors that influence ranges
 - Include models for ranges (where appropriate)
4. Costs
 - Remove €/m³ costings
 - Replace with relative costs / ranking basis
5. Revisit category 1, 2 and 3 classifications
6. Include literature references
Progress to Date

1. More text regarding other potential loss pathways (avoid pollution swapping)
 - Already mentioned in paragraph 21
 “Lowering NH3 emissions may increase the amount of N available for plant uptake, so mineral N fertilizer application rates may need to be adjusted. Some techniques may temporarily decrease crop yield (especially of grass) through mechanical damage. There is also potential for increasing N losses by other pathways, e.g. nitrate leaching, nitrification or denitrification, the latter two processes resulting in greater emissions of nitrous oxide (N2O).”
 - Timing of application for maximum crop N uptake (paragraph 17)
 • Not necessarily going to help reduce NH3 emissions
 • Will help reduce nitrate and N2O losses
 - Further inclusions ??
 • N_2O - Injection vs. incorporation (Webb review)
Progress to Date

2. Clarification of terms and description of application techniques
 - More descriptive text on machine classifications included
 (e.g. band-spreading: trailing hose vs. trailing shoe)
Progress to Date

3. Ammonia reduction efficiencies

- **Table 2(a)**
- More ranges rather than single figures
 - Ranges included
- Discussion of factors that influence ranges
 - New column included
- Include models for ranges (where appropriate)
 - Scope for inclusion of equations / models
- Webb review

<table>
<thead>
<tr>
<th>Abatement measure</th>
<th>Type of manure</th>
<th>Land use</th>
<th>Emission reduction (%)</th>
<th>Factors affecting emission reduction</th>
<th>Applicability</th>
<th>Estimated costs relative to reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trailing hose</td>
<td>Slurry</td>
<td>Grassland, arable land</td>
<td>20-30</td>
<td>Height of crop canopy</td>
<td>Slope (<15% for tankers; 25% for umbilical systems); not for slurry that is viscous or has a large straw content; size and shape of field should be considered.</td>
<td>1.4</td>
</tr>
<tr>
<td>Trailing shoe</td>
<td>Slurry</td>
<td>Mainly grassland</td>
<td>20-60**</td>
<td>Height of crop canopy</td>
<td>Slope (<15% for tankers; 25% for umbilical systems); not viscous slurry; size and shape of the field; grass height should be >8 cm.</td>
<td>1.6</td>
</tr>
<tr>
<td>Shallow injection (open slot)</td>
<td>Slurry</td>
<td>Grassland</td>
<td>70-80**</td>
<td>Slurry spillage out of injection slits</td>
<td>Slope <10%; greater limitations for soil type and conditions; not viscous slurry</td>
<td>1.8</td>
</tr>
<tr>
<td>Shallow injection (closed slot)</td>
<td>Slurry</td>
<td>Mainly grassland, arable land</td>
<td>80-90</td>
<td>Effective slit closure</td>
<td>Slope <10%; greater limitations for soil type and conditions; not viscous slurry Only for land that can be easily cultivated</td>
<td>2.0</td>
</tr>
<tr>
<td>Broadcast application and</td>
<td>Slurry</td>
<td>Arable land</td>
<td>50-60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>incorporation by plough in one</td>
<td></td>
<td></td>
<td></td>
<td>Incorporation by disc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>process</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadcast application and</td>
<td>Slurry</td>
<td>Arable land</td>
<td>15</td>
<td></td>
<td>(according to § 10)</td>
<td></td>
</tr>
<tr>
<td>incorporation by plough within</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing of application and</td>
<td>Slurry</td>
<td>Grassland and arable</td>
<td>0-30</td>
<td>Lower wind speed air temperature, and solar radiation; higher rainfall and relative humidity. Often associated with season (e.g. spring)</td>
<td>Dependent on availability of spreadland with suitable soil trafficability and herbage canopy conditions</td>
<td>1.0</td>
</tr>
<tr>
<td>weather conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Progress to Date

4. Costs

- Remove €/m³ costings
- Replace with relative costs / ranking basis
 - **Costing including (estimated scale relative to splashplate as reference method)**
 - **Webb review**

<table>
<thead>
<tr>
<th>Abatement measure</th>
<th>Type of manure</th>
<th>Land use</th>
<th>Emission reduction (%)</th>
<th>Factors affecting emission reduction</th>
<th>Applicability</th>
<th>Estimated costs relative to reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trailing hose</td>
<td>Slurry</td>
<td>Grassland, arable land</td>
<td>20-30</td>
<td>Emission reduction may be less if applied on grass <10 cm.</td>
<td>Height of crop canopy</td>
<td>Slope (<15% for tankers; 25% for umbilical systems); not for slurry that is viscous or has a large straw content; size and shape of field should be considered.</td>
</tr>
<tr>
<td>Trailing shoe</td>
<td>Slurry</td>
<td>Mainly grassland</td>
<td>20-60**</td>
<td>Height of crop canopy</td>
<td>Slope (<15% for tankers; 25% for umbilical systems); not viscous slurry; size and shape of the field; grass height should be >8 cm.</td>
<td>1.6</td>
</tr>
<tr>
<td>Shallow injection (open slot)</td>
<td>Slurry</td>
<td>Grassland</td>
<td>70-80**</td>
<td>Slurry spillage out of injection slits</td>
<td>Slope <10%; greater limitations for soil type and conditions; not viscous slurry</td>
<td>1.8</td>
</tr>
<tr>
<td>Shallow injection (closed slot)</td>
<td>Slurry</td>
<td>Mainly grassland, arable land</td>
<td>80-90</td>
<td>Effective slit closure</td>
<td>Slope <10%; greater limitations for soil type and conditions; not viscous slurry</td>
<td>2.0</td>
</tr>
<tr>
<td>Broadcast application? and incorporation by plough in one process</td>
<td>Slurry</td>
<td>Arable land</td>
<td>50-60</td>
<td></td>
<td>Only for land that can be easily cultivated</td>
<td></td>
</tr>
<tr>
<td>Broadcast application and incorporation by plough (costs for < 4 h) Incorporation by disc</td>
<td>Slurry</td>
<td>Arable land</td>
<td>60</td>
<td></td>
<td>(according to § 10)</td>
<td></td>
</tr>
<tr>
<td>Broadcast application and incorporation by plough within 12 h Timing of application and weather conditions</td>
<td>Slurry</td>
<td>Grassland and arable</td>
<td>0-30</td>
<td>Lower wind speed air temperature, and solar radiation; higher rainfall and relative humidity. Often associated with season (e.g. spring)</td>
<td>Dependent on availability of spreadland with suitable soil trafficability and herbage canopy conditions</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Progress to Date

5. Revisit category 1, 2 and 3 classifications
 – Timing of application and weather conditions switched from category 2 into category 1
 – Reduce time for incorporation of surface applied manures/slurries to 4 hours
Progress to Date

6. Include literature references
 - No progress to date
 - Suggest to include in unobtrusive way
 - Input form previous authors/reviewers of Guidance Document?
Completing the Review

Consensus required on a number of issues:

– Inclusion of references – who?
– More text on pollution swapping / co-benefits
– Decisions on: (Webb review + others)

• Emission reduction ranges (+ models)

• Costings and units to use

• Category 1, 2 & 3 techniques