@article {Leip2011b, title = {{Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI}}, journal = {Environmental Pollution}, volume = {159}, number = {11}, year = {2011}, pages = {3243{\textendash}3253}, abstract = {We calculated farm, land, and soil N-budgets for countries in Europe and the EU27 as a whole using the agro-economic model CAPRI. For EU27, N-surplus is 55 kg N ha -1 yr -1 in a soil budget and 65 kg N 2O-N ha -1 yr -1 and 67 kg N ha -1 yr -1 in land and farm budgets, respectively. NUE is 31{\%} for the farm budget, 60{\%} for the land budget and 63{\%} for the soil budget. NS values are mainly related to the excretion (farm budget) and application (soil and land budget) of manure per hectare of total agricultural land. On the other hand, NUE is best explained by the specialization of the agricultural system toward animal production (farm NUE) or the share of imported feedstuff (soil NUE). Total N input, intensive farming, and the specialization to animal production are found to be the main drivers for a high NS and low NUE. {\textcopyright} 2011 Elsevier Ltd. All rights reserved.}, keywords = {agriculture, Europe, Nitrogen budgets, Nitrogen use efficiency, Nutrient balances}, issn = {02697491}, doi = {10.1016/j.envpol.2011.01.040}, url = {http://dx.doi.org/10.1016/j.envpol.2011.01.040}, author = {Leip, Adrian and Britz, Wolfgang and Weiss, Franz and De Vries, Wim} } @article {Westhoek2014, title = {{Food choices, health and environment: Effects of cutting Europe{\textquoteright}s meat and dairy intake}}, journal = {Global Environmental Change}, volume = {26}, number = {1}, year = {2014}, month = {mar}, pages = {196{\textendash}205}, publisher = {Elsevier Ltd}, abstract = {Western diets are characterised by a high intake of meat, dairy products and eggs, causing an intake of saturated fat and red meat in quantities that exceed dietary recommendations. The associated livestock production requires large areas of land and lead to high nitrogen and greenhouse gas emission levels. Although several studies have examined the potential impact of dietary changes on greenhouse gas emissions and land use, those on health, the agricultural system and other environmental aspects (such as nitrogen emissions) have only been studied to a limited extent. By using biophysical models and methods, we examined the large-scale consequences in the European Union of replacing 25-50{\%} of animal-derived foods with plant-based foods on a dietary energy basis, assuming corresponding changes in production. We tested the effects of these alternative diets and found that halving the consumption of meat, dairy products and eggs in the European Union would achieve a 40{\%} reduction in nitrogen emissions, 25-40{\%} reduction in greenhouse gas emissions and 23{\%} per capita less use of cropland for food production. In addition, the dietary changes would also lower health risks. The European Union would become a net exporter of cereals, while the use of soymeal would be reduced by 75{\%}. The nitrogen use efficiency (NUE) of the food system would increase from the current 18{\%} to between 41{\%} and 47{\%}, depending on choices made regarding land use. As agriculture is the major source of nitrogen pollution, this is expected to result in a significant improvement in both air and water quality in the EU. The resulting 40{\%} reduction in the intake of saturated fat would lead to a reduction in cardiovascular mortality. These diet-led changes in food production patterns would have a large economic impact on livestock farmers and associated supply-chain actors, such as the feed industry and meat-processing sector. {\textcopyright} 2014 The Authors.}, keywords = {Dietary change, Greenhouse gas emissions, Human diet, Land use, Livestock, Reactive nitrogen}, issn = {09593780}, doi = {10.1016/j.gloenvcha.2014.02.004}, url = {http://dx.doi.org/10.1016/j.gloenvcha.2014.02.004 http://linkinghub.elsevier.com/retrieve/pii/S0959378014000338}, author = {Westhoek, Henk and Lesschen, J.P. Jan Peter and Rood, Trudy and Wagner, Susanne and De Marco, Alessandra and Murphy-bokern, Donal and Leip, Adrian and van Grinsven, Hans and Sutton, Mark A. and Oenema, Oene} } @article {Kanter2020, title = {{A framework for nitrogen futures in the shared socioeconomic pathways}}, journal = {Global Environmental Change}, year = {2020}, keywords = {corresponding author, s}, author = {Kanter, David R and Winiwarter, Wilfried and Bodirsky, Benjamin and Bouwman, Lex and Boyer, Elizabeth and Buckle, Simon and Compton, Jana and Dalgaard, Tommy and wim de Vries and Lecl{\`e}re, David and Leip, Adrian and Muller, Christoph and Popp, Alexander and Raghuram, Nandula and Rao, Shilpa and Sutton, Mark A. and Tian, Hanqin and Westhoek, Henk and Zhang, Xin and Zurek, Monika} }